Great observation! Yes, the simulations I posted *do not* include CPU and GPU coolers.
The Tl;Dr is: they don't affect *global airflow* in the case in a meaningful way. However, if you want the full explanation, please read on! ?
----------------
Initially, I set up my models with the assumption that these parts *
did* affect global flow. Because of the variation in product geometry, I chose the *least* aerodynamic shape for CPU / GPU heatsinks, for the early modeling of this case... A Rectangular "Brick" (think: Radeon VII) was used to model the GPU cooler, and a similar, down firing (but Square) Brick was used to model the CPU cooler (think: Noctua L9x65).
Now, the reason these heatsinks all have fans strapped to them, is that fin density is high and drag is therefore very high, as the more surfaces you have the more flow loses kinetic energy due to boundary layer interactions. The Fan imparts KE and P to the fluid, and the fluid expends ∆P & KE to move through the heatsink.
In all my testing, I found that with most CPU and GPU coolers, the kinetic energy / pressure imparted by the fan *mostly* expended when getting air through the heatsink, with velocities approaching the low 15-20cm/s at the heatsink "exhaust". So, in modeling these fans, while they act as an "intake" with a wide cone, and performance of the heatsinks was affected by that intake air being a clean, steady supply,
their affect on airflow within the case was mostly confined to their local area, rather than any meaningful global effect, except for diverting flow, based on the volume they occupied. Additionally, the warm air that
was exhausted followed the "global" flow of air, and was carried out with the global flow in the case.
What mattered for the performance of these components was 2 main things: (1) -- access to a consistent supply of COOL AIR, and (2) avoiding recirculation of HOT air. Remember my discussion about the dangers of all-intake creating recirculation in SFF cases? That problem is amplified when your system becomes a heat sink with a fan on it, that's only a few cm in length! This is why some heat sink designs use a shorter pathway with 2 separate fan+fin stacks (NH-D15, for example), with each having higher exhaust velocity, or if they use a single fan they keep the pathways short to ensure enough exhaust velocity (NH-U14S, for example), and if they want a longer pathway for more "compact" cooling performance, they add an outtake fan (NH-U12A, for example) to push exhaust away, and create a larger pressure gradient across the long pathway.
To address these problems, I designed Winter One to ensure that (1) The Airflow in the case provides cool air to any intake fans, and (2) airflow in the case was moving quickly enough that it carries away the "slow and hot" flow coming from these heatsinks. So the solution is this: IF you have a solid side panel, make sure there is enough clearance (1cm, recommended) between that intake fan, and the side of the case... IF you want to use thicker components (say, a 3-slot GPU, or an intake fan very close to a panel), Go with the Perforated Side Panel Option. They were designed so the airflow actually bows out of the case a bit (while still maintaining good flow within the case itself, about a 10cm/s *drop* in flow (from 80 to 70) cm/s but that flow moving over the outside of the panels *consistently* provides a clean intake for something like a triple slot air-cooled GPU... Meanwhile flow inside the case overcomes the "local" behavior of the slow exhaust air coming from those heatsinks, and carries it to the top exhaust. In the case of a blower card, It simply acts like a "sink" pulling in some flow from all directions, but again, very much a local effect, extending In a few CM in every direction.... it doesn't really interfere with, or interrupt the global flow in the case.
The best way I can explain local vs global flow, is you blowing at some smoke / steam coming from boiling pasta... Your blowing overcomes the tendency of the steam to rise in a straight line... so you are pushing the water vapor to a different location on one axis, but *even as you do, the steam continues to rise* --
these behaviors are exhibited together, but the flow with the highest velocity becomes the predominant behavior. This is how flow is summed up on exhaust air at low velocities coming from a CPU / GPU heatsink...
So, after a few iterations of this, and realizing that these systems had nothing to do with the global flow in the case, I excluded them from *most* simulations, and occasionally did a few sanity check simulations after major redesigns, to ensure that this behavior hadn't changed.
---------------
I will not be posting any of the CFD results that include components inside, to try and protect some of the IP around how I managed airflow around those components, and optimized the various configurations and layouts to account for varied local flow based on what parts were installed.
At the same time, the manual will include suggested airflow setups for best performance, so that users building in the case can benefit from this work. ?