Generally, as shown in Figure 3, the dimensions of the thermal interposer component planar body are selected based upon the configuration of the computer adapter card 10a, 10b to which the thermal interposer component 200 is to be coupled, and are further selected to enable the combined assembly of the computer adapter card 10a, 10b, the thermal interposer component 200, and the operatively coupled cold plate assembly 100 to fit within the spatial requirements of either a single-slot or double-slot personal computer adapter card. Those of ordinary skill in the art will recognize that the thermal interposer component 200 may have any of a variety of different configurations based upon the particular physical space limitations associated with the electronic components being cooled, and upon the arrangement of heat sources in thermal proximity to the surfaces of the thermal interposer. For example, while the embodiment shown in Figure 3 illustrates a thermal interposer 200 of the present disclosure having a pair of planar bodies 202 and 204 disposed in a sandwiched configuration between a pair of circuit boards 10a and 10b, the embodiment shown in Figure 4 illustrates an alternate configuration of the thermal interposer having only a single planar body 202 disposed adjacent a single circuit board 10, sized to fit within a double-slot PC card configuration. The embodiment shown in Figure 4 illustrates an optional arrangement wherein only a single lower planar body 202 is utilized adjacent a single circuit board 10 and associated heat sources, without an upper planar body 204. The heat pipe 208 is routed through a serpentine path to facilitate transfer of thermal energy from the lower planar body 202 to the thermal transfer region 210, defined by a recessed seat or socket for receiving a modular cold plate assembly 100, and the associated cold plate assembly 100.